Telomere lengthening via gene therapy achieved for the first time

U.S. biotech company BioViva has announced the first successful use of gene therapy to extend telomeres, believed to be vitally important in the fight against human aging.
In September 2015, then 44 year-old CEO of BioViva, Elizabeth Parrish, received two of her own company's experimental gene therapies: one to protect against loss of muscle mass with age; another to battle stem cell depletion responsible for diverse age-related diseases and infirmities.

The treatment was originally intended to demonstrate the safety of the latest generation of the therapies. But if early data is accurate, it is already the world's first successful example of telomere lengthening via gene therapy in a human individual. Gene therapy has been used to lengthen telomeres before in mice and in cultured cells – but never in a human patient, until now.

Telomeres are short segments of DNA which cap the ends of every chromosome. Like the plastic tips on shoelaces that stop them from fraying, they act as 'buffers' against wear and tear. With every cell division they become shorter, eventually getting too short to protect the chromosome, causing the cell to malfunction and the body to age.

In September 2015, telomere data from Parrish's white blood cells (immediately before therapies were administered), revealed that her telomeres were unusually short for her age, leaving her vulnerable to age-related diseases earlier in life.

In March 2016, following BioViva's treatment, the same tests taken again revealed that her telomeres had lengthened by the equivalent of 20 years, from 6.71kb to 7.33kb – implying that Parrish's white blood cells (leukocytes) had become biologically younger. These findings were independently verified by the non-profit, Brussels-based HEALES (HEalthy Life Extension Company), and the Biogerontology Research Foundation, a UK-based charity committed to aging research.

"Current therapeutics offer only marginal benefits for people suffering from diseases of aging," Parrish commented. "Additionally, lifestyle modification has limited impact for treating these diseases. Advances in biotechnology are the best solution, and if these results are anywhere near accurate, then we've made history."

BioViva will continue to monitor Parrish's blood for months and years to come. Meanwhile, the company will be testing new gene therapies and combination gene therapies to restore age-related damage. It remains to be seen whether the success in leukocytes can be expanded to other tissues and organs, and repeated in future patients with larger sample sizes. For now, all the answers lie in the cells of Elizabeth Parrish, "patient zero" of restorative gene therapy.

Since her first gene therapy injections, BioViva has received global interest from both the scientific and investment communities. Earlier this month, BioViva became a portfolio company of Deep Knowledge Life Sciences (DKLS), a London-based investment fund which aims to accelerate the development of biotechnologies for healthy longevity.

Dmitry Kaminskiy, founding partner of DKLS, said: "Many innovative companies have come to us looking for funding and support. BioViva is one among several other breakthrough companies that are going to leapfrog the current generation of biotech and will be included in our portfolio. This is the start of a big trend, and it ought to give investors food for thought. 2017 will be the year in which we will see an investment boom in the longevity industry."Source: http://www.futuretimeline.net/